Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life.

نویسندگان

  • Ralf Weßling
  • Petra Epple
  • Stefan Altmann
  • Yijian He
  • Li Yang
  • Stefan R Henz
  • Nathan McDonald
  • Kristin Wiley
  • Kai Christian Bader
  • Christine Gläßer
  • M Shahid Mukhtar
  • Sabine Haigis
  • Lila Ghamsari
  • Amber E Stephens
  • Joseph R Ecker
  • Marc Vidal
  • Jonathan D G Jones
  • Klaus F X Mayer
  • Emiel Ver Loren van Themaat
  • Detlef Weigel
  • Paul Schulze-Lefert
  • Jeffery L Dangl
  • Ralph Panstruga
  • Pascal Braun
چکیده

While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this data set with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intraspecies and interspecies convergence and several altered immune response phenotypes. Several effectors and the most heavily targeted host protein colocalized in subnuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independently evolved virulence effectors converge onto hubs in a plant immune system network.

Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes o...

متن کامل

Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity.

Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of b...

متن کامل

Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecu...

متن کامل

Network Analysis Reveals a Common Host–Pathogen Interaction Pattern in Arabidopsis Immune Responses

Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein-protein interaction network, known targets of Pseudomonas syringae and Hy...

متن کامل

Convergent and divergent mechanisms of sugar recognition across kingdoms

Protein modules that bind specific oligosaccharides are found across all kingdoms of life from single-celled organisms to man. Different, overlapping and evolving designations for sugar-binding domains in proteins can sometimes obscure common features that often reflect convergent solutions to the problem of distinguishing sugars with closely similar structures and binding them with sufficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell host & microbe

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2014